skip to main content


Search for: All records

Creators/Authors contains: "Nedora, Vsevolod"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4Mneutron star to be$$R=11.9{8}_{-0.40}^{+0.35}$$R=11.980.40+0.35km.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. ABSTRACT Over the past 3 yr, the fading non-thermal emission from the GW170817 remained generally consistent with the afterglow powered by synchrotron radiation produced by the interaction of the structured jet with the ambient medium. Recent observations by Hajela et al. indicate the change in temporal and spectral behaviour in the X-ray band. We show that the new observations are compatible with the emergence of a new component due to non-thermal emission from the fast tail of the dynamical ejecta of ab-initio binary neutron star merger simulations. This provides a new avenue to constrain binary parameters. Specifically, we find that equal mass models with soft equations of state (EOSs) and high-mass ratio models with stiff EOSs are disfavoured as they typically predict afterglows that peak too early to explain the recent observations. Moderate stiffness and mass ratio models, instead, tend to be in good overall agreement with the data. 
    more » « less
  3. Abstract

    We present fitting formulae for the dynamical ejecta properties and remnant disk masses from the largest to date sample of numerical relativity simulations. The considered data include some of the latest simulations with microphysical nuclear equations of state (EOS) and neutrino transport as well as other results with polytropic EOS available in the literature. Our analysis indicates that the broad features of the dynamical ejecta and disk properties can be captured by fitting expressions, that depend on mass ratio and reduced tidal parameter. The comparative analysis of literature data shows that microphysics and neutrino absorption have a significant impact on the dynamical ejecta properties. Microphysical nuclear EOS lead to average velocities smaller than polytropic EOS, while including neutrino absorption results in larger average ejecta masses and electron fractions. Hence, microphysics and neutrino transport are necessary to obtain quantitative models of the ejecta in terms of the binary parameters.

     
    more » « less
  4. null (Ed.)
    ABSTRACT The joint detection of the gravitational wave GW170817, of the short γ-ray burst GRB170817A and of the kilonova AT2017gfo, generated by the the binary neutron star (NS) merger observed on 2017 August 17, is a milestone in multimessenger astronomy and provides new constraints on the NS equation of state. We perform Bayesian inference and model selection on AT2017gfo using semi-analytical, multicomponents models that also account for non-spherical ejecta. Observational data favour anisotropic geometries to spherically symmetric profiles, with a log-Bayes’ factor of ∼104, and favour multicomponent models against single-component ones. The best-fitting model is an anisotropic three-component composed of dynamical ejecta plus neutrino and viscous winds. Using the dynamical ejecta parameters inferred from the best-fitting model and numerical–relativity relations connecting the ejecta properties to the binary properties, we constrain the binary mass ratio to q < 1.54 and the reduced tidal parameter to $120\lt \tilde{\Lambda }\lt 1110$. Finally, we combine the predictions from AT2017gfo with those from GW170817, constraining the radius of a NS of 1.4 M⊙ to 12.2 ± 0.5 km (1σ level). This prediction could be further strengthened by improving kilonova models with numerical-relativity information. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)